مقایسه روش های طبقه بندی ماشین بردار پشتیبان و شبکه عصبی مصنوعی در استخراج کاربری های اراضی از تصاویر ماهواره ای لندست tm
Authors
abstract
طبقه بندی و تهیه نقشه کاربری های اراضی یکی از پرکاربردترین موارد در استفاده از داده های سنجش از دور است. تعدادی از روش های پیشرفته تر طبقه بندی در دهه های گذشته توسعه پیداکرده اند که از آنها می توان به شبکه های عصبی مصنوعی و ماشین بردار پشتیبان اشاره کرد. در این مطالعه از تصاویر لندستtm باقدرت تفکیک 30 متر جهت استخراج کاربری های اراضی با استفاده از دو روش طبقه بندی شبکه عصبی مصنوعی و ماشین بردار پشتیبان اقدام شد. نتایج، دقت بالای طبقه بندی های شبکه عصبی و ماشین بردار پشتیبان با کرنل شعاعی، هر کدام به ترتیب با دقت کلی 67/90 و 67/91 درصد را نشان داد. ماشین بردار پشتیبان کلاس هایی را که دارای خصوصیات طیفی مشترک بودند بهتر تفکیک کرد. همچنین در قسمت های مرزی دو نوع کاربری، ماشین بردار پشتیبان قابلیت جداسازی بهتری نسبت به شبکه عصبی داشت و مرز بین دو کلاس ملموس تر بود. با توجه به نتایج گرفته شده، هر دو روش شبکه عصبی و ماشین بردار پشتیبان برای طبقه بندی کاربری های اراضی خوب بوده، اما روش ماشین بردار پشتیبان با اختلاف 1 درصد در دقت کلی و 2درصد در ضریب کاپا بهتر بود. دقت بالای ماشین بردار پشتیبان می تواند ناشی از مرز تصمیم گیری بهینه آن باشد درحالی که شبکه عصبی نمی تواند این مرز را ایجاد کند.
similar resources
مقایسه روشهای طبقهبندی ماشین بردار پشتیبان و شبکه عصبی مصنوعی در استخراج کاربریهای اراضی از تصاویر ماهوارهای لندست TM
Land use classification and mapping mostly use remotely sensed data. During the past decades, several advanced classification methods such as neural network and support vector machine (SVM) have been developed. In the present study, Landsat TM images with 30m spatial resolution were used to classify land uses through two classification methods including support vector machine and neural network...
full textمقایسه روش های شبکه عصبی و ماشین بردار پشتیبان در استخراج نقشه های کاربری و پوشش اراضی با استفاده از تصاویر لندست 8 (مطالعه موردی: حوضه صوفی چای)
تهیه نقشه کاربری و پوشش اراضی برای برنامهریزی و مدیریت منابع طبیعی امری ضروری میباشد. در این بین استفاده از دادههای سنجش از دور با توجه به ارائه اطلاعات به روز، پوشش تکراری، کمهزینه بودن در ارزیابی منابع طبیعی جایگاه خاصی دارد. لذا در این پژوهش، تصاویر لندست 8 بهعنوان داده ورودی برای تهیه نقشه کاربری اراضی در سطح 2و1 مورد استفاده قرار گرفت. در این بین، با توجه به جدید بودن این تصاویر، تصحی...
full textمقایسة روش های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا در استخراج کاربری و پوشش اراضی از تصاویر لندست 8
تهیة نقشه کاربری/پوشش اراضی، برای برنامهریزی و مدیریت مکانی ضروری است. امروزه تصاویر ماهورهای و تکنیکهای سنجش از دور،به دلیل فرآهم آوردن دادههای بهنگام و قابلیت بالای آنالیز تصاویر، کاربرد گستردهای در تمامی بخشها از جمله بخشهای کشاورزی و منابع طبیعی دارند. در پژوهش حاضر طبقهبندیکنندههای شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا جهت تهیه نقشةکاربری/پوشش اراضی شهرستانهای اردبیل، ن...
full textمقایسه روش های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا در استخراج کاربری و پوشش اراضی از تصاویر لندست ۸
تهیه نقشه کاربری/پوشش اراضی، برای برنامهریزی و مدیریت مکانی ضروری است. امروزه تصاویر ماهورهای و تکنیکهای سنجش از دور،به دلیل فرآهم آوردن دادههای بهنگام و قابلیت بالای آنالیز تصاویر، کاربرد گستردهای در تمامی بخشها از جمله بخشهای کشاورزی و منابع طبیعی دارند. در پژوهش حاضر طبقهبندیکنندههای شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا جهت تهیه نقشهکاربری/پوشش اراضی شهرستانهای اردبیل، ن...
full textمقایسه ی روش های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و درخت تصمیم گیری در شناسایی ابر در تصاویر ماهواره ای لندست 8
مقالهی پیشرو به مقایسهی سه روش ماشین بردار پشتیان،شبکهی عصبی مصنوعی و درخت تصمیم گیری با هدف شناسایی ابر میپردازد. وجود ابر در تصاویر ماهوارهای اپتیکی، پیشپردازشهای رادیومتریکی در کاربردهای سنجش از دور را ایجاب میکند. معمولا شناسایی ابر در تصاویر ماهوارهای با استفاده از روشهای طبقهبندی نظارت شده امکان پذیر میباشد. در این مقاله تصاویر ماهوارهای لندست 8 از دو منطقهی واقع در رشتهک...
full textمقایسه روش های شبکه عصبی و ماشین بردار پشتیبان در استخراج نقشه های کاربری و پوشش اراضی با استفاده از تصاویر لندست 8 (مطالعه موردی: حوضه صوفی چای)
تهیه نقشه کاربری و پوشش اراضی برای برنامهریزی و مدیریت منابع طبیعی امری ضروری میباشد. در این بین استفاده از دادههای سنجش از دور با توجه به ارائه اطلاعات به روز، پوشش تکراری، کمهزینه بودن در ارزیابی منابع طبیعی جایگاه خاصی دارد. لذا در این پژوهش، تصاویر لندست 8 بهعنوان داده ورودی برای تهیه نقشه کاربری اراضی در سطح 2و1 مورد استفاده قرار گرفت. در این بین، با توجه به جدید بودن این تصاویر، تصحی...
full textMy Resources
Save resource for easier access later
Journal title:
علوم آب و خاکجلد ۱۹، شماره ۷۲، صفحات ۳۵-۴۵
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023